24 research outputs found

    INTEGRATED QUANTUM PHOTONIC CIRCUITS WITH QUANTUM DOTS

    Get PDF
    Scalable quantum photonics require efficient single-photon emitters as well as low-loss reconfigurable photonic platforms that connect and manipulate these single photons. Quantum dots are excellent sources of on-demand single photons and can act as stable quantum memories. Therefore, integration of quantum dots with photonic platforms is crucial for many applications in quantum information processing. In this thesis, we first describe hybrid integration of InAs quantum dots hosted in InP to silicon photonic waveguides. We demonstrate an efficient transition of quantum emission to silicon. Quantum nature of the emission is confirmed through photon correlation measurements. Secondly, we present a micro-disk resonator device based on silicon photonics that enables on-chip filtering and routing of single photons generated by quantum dots. The tunability of silicon photonics decreases at low temperatures due to “carrier freeze-out”. Because of a strong electro-optic effect in lithium niobate, this material is the ideal platform for reconfigurable photonics, even at cryogenic temperatures. To this end, we demonstrate integration of quantum dots with thin-film lithium niobate photonics promising for active switching and modulating of single photons. More complex quantum photonic devices require multiple identical single-photon emitters on the chip. However, the transition wavelength of quantum dots varies because of the slightly different shape and size of each dot. To address this hurdle, we propose and characterize a quantum dot device located in an electrostatic field. The resonance wavelength of the quantum dot emission is tuned up to 8 nm, more than one order of magnitude greater than the transition linewidth, opening the possibility of tuning multiple quantum dots in resonance with each other. Finally, we discuss the application of a single quantum dot strongly coupled to a nanophotonic cavity as an efficient medium for non-linear phenomenon of optical amplification. Presence of a strong pump laser inverses the population of the quantum dot and leads to stimulated emission from the cavity-coupled quantum dot. Using this platform, we observe an optical gain of ~ 16%, significantly increased compared to previous demonstrations of gain in single solid-state quantum emitters without cavities or weakly coupled to cavities. These demonstrations are significant steps toward robust control of single photons using linear and non-linear photonic platforms

    Hybrid integration methods for on-chip quantum photonics

    Get PDF
    The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Radiative Enhancement of Single Quantum Emitters in WSe2 Monolayers Using Site-Controlled Metallic Nanopillars

    Get PDF
    Plasmonic nanostructures provide an efficient way to control and enhance the radiative properties of quantum emitters. Coupling these structures to single defects in two-dimensional materials provides a particularly promising material platform to study emitter-plasmon interactions because these emitters are not embedded in a surrounding dielectric. They can therefore approach a near-field plasmonic mode to nanoscale distances, potentially enabling strong light-matter interactions. However, this coupling requires precise alignment of the emitters to the plasmonic mode of the structures, which is particularly difficult to achieve in a site-controlled structure. We present a technique to generate quantum emitters in two-dimensional tungsten diselenide coupled to site-controlled plasmonic nanopillars. The plasmonic nanopillar induces strains in the two-dimensional material which generate quantum emitters near the high-field region of the plasmonic mode. The electric field of the nanopillar mode is nearly parallel to the two-dimensional material and is therefore in the correct orientation to couple to the emitters. We demonstrate both an enhanced spontaneous emission rate and increased brightness of emitters coupled to the nanopillars. This approach may enable bright site-controlled nonclassical light sources for applications in quantum communication and optical quantum computing
    corecore